Login

CLOSE

Access to the Members' Section is restricted to people who work for our parent organisations or who belong to one of our Groups, such as the Scientific Advisory Board.

Please fill in the fields below to login

If you have forgotten your password please contact us at info@genomel.org

Registration

If you don't have an account, you can sign in here

What is BioGenoMEL?

BioGenoMEL is a consortium for the pooling of data and samples to identify genes and environmental exposures that predict risk of relapse from melanoma. Our hypothesis is that survival is determined by an interaction between the tumour, the host, and the host's environment. To achieve sufficient statistical power we are integrating the resources of groups from across the world.

The consortium will build on the highly successful work of GenoMEL www.genomel.eu in identifying susceptibility genes.

Leeds University Logo
SCaRF logo
This website is supported by a grant from SCaRF

Terms & Conditions

  • 1 Use of this Web Site is subject to these terms and conditions. By using this Web Site you agree to be bound by these terms and conditions, which form a binding contract between you and BioGenoMEL (BioGenoMEL is an international research consortium coordinated by the University of Leeds).
  • 2 Certain parts of this Web Site may be subject to registration and additional terms and conditions, which will be made available for you to read at the time of registration.
  • 3 Unless otherwise indicated, this Web Site and its contents are the property of BioGenoMEL, (Coordinator address - Leeds Cancer Research UK Centre, Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, Cancer Genetics Building, St James's University Hospital, Beckett Street, Leeds, LS9 7TF). The copyright in the material contained on this Web Site belongs to BioGenoMEL or its licensors. The trademarks appearing on this Web Site are protected by the laws of England and international trademark laws. Reproduction of material on this Web Site is prohibited unless express permission is given by BioGenoMEL.
  • 4 Save as expressly set out herein no license is granted in respect of any intellectual property rights vested in BioGenoMEL or other third parties.
  • 5 BioGenoMEL reserves the right to suspend or terminate your access and use of this Web Site at any time without notice.
  • 6 You may not redistribute any of the Content of this Web Site or create a database in electronic form or manually by downloading and storing any such content Site without the prior authorization of BioGenoMEL.
  • 7 You may link to but not replicate the Content on this Web Site provided you do not create a frame or any other bordered environment around the content and provided that any such linking does not imply any endorsement of any product or services and provided further that the website linking to this Web Site does not contain any intellectual property right, including without limitation copyright, trademark, design right or patent, infringing, distasteful or offensive material. BioGenoMEL reserves the right to require you to remove any link to this Web Site.
  • 8 THIS WEB SITE AND ITS CONTENT IS PROVIDED FOR USE "AS IS". BioGenoMEL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THIS WEB SITE OR ITS CONTENTS, ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR PURPOSE RELATING TO THIS WEB SITE AND/OR ITS CONTENT AND/OR ANY WEB SITE TO WHICH IT IS LINKED ARE HEREBY TO THE FULLEST EXTENT PERMITTED BY LAW EXCLUDED. NO REPRESENTATIONS OR WARRANTIES ARE GIVEN AS TO THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ON THIS WEB SITE, OR ANY WEB SITE TO WHICH IT IS LINKED.
  • 9 In no event shall BioGenoMEL or its employees, members, agents, suppliers, or contractors be liable for any damages of any nature, including without limitation any consequential loss, loss of income or profit, loss of or damage to property, claims of third parties, or any other loss, cost, claim or expense of any kind or character arising out of or in connection with the use of this Web Site, its content or any Web Site with which it is linked. This exclusion and limitation only applies to the extent permitted by law and does not apply to liability for death or personal injury caused by the negligence of BioGenoMEL, its employees, agents, suppliers or contractors
  • 10 BioGenoMEL reserves the right to change these terms and conditions by posting changes on this page of the Web Site and you will be deemed to have accepted such changes if you use this Web Site after BioGenoMEL has published the amended terms and conditions on this page of the Web Site.
  • 11 These terms shall be governed by and construed in accordance with English Law.

Page updated: 23/05/11

This site was created by NKD Ltd

Glossary

CLOSE
Associated
When two things are associated they are connected or joined in some way. It may be that one thing causes the other but they could be linked in some other way. For instance, if both things were caused by a separate, third thing.
Clinical geneticist
A doctor concerned with the care of people with genetic conditions.
Dermatologist
A specialist 'skin' doctor.
Freckle
A small brown patch on the skin that becomes darker following exposure to sunlight. Freckles can vary from light brown to dark brown, and are often found on the cheeks and across the bridge of the nose.
Genes
Genes are pieces of genetic 'code': they are the instructions or recipes that our bodies use for growth and repair.
GenoMEL
The Melanoma Genetics Consortium: an international, collaborative organisation researching the genetics of melanoma.
High-risk genes
Particular genes can make us more susceptible to diseases. If we have changes in them called mutations, and if the mutation significantly increase the risk of a disease (as compared to someone who does not have a mutation in the gene), it is called a high-risk gene.
IU
International Units
Melanoma
Melanoma is a form of cancer that develops from the pigment producing cells of the skin. If untreated it can spread through the body and is potentially fatal.
Microgram
A microgram (mcg) is a millionth of a gram.
Mutations
Mutations are changes or faults in our genes. Sometimes mutations can increase our chances of developing a disease.
nmol/L
nmol/L stands for nanomoles per litre. A nanomole is an extremely small unit of measurement.
Nervous system tumours
The nervous system consists of the brain, spinal cord, nerves and other structures that control our bodies. A tumour is an abnormal growth, which can be cancerous (having the potential to spread around the body) or benign (the growth remains in a single spot but may continue to grow in size).
Pancreas
The pancreas is a gland that lies behind the stomach. It produces digestive juices and controls blood sugar levels.
Risk
We are using the word risk to mean the chances of something happening. For example, if something is more likely to happen to John than to Peter then John is at greater risk than Peter.
SPF
Sun Protection Factor
UVA
UVA is a form of ultraviolet radiation. It is sometimes called long wave UV or black light.
Uveal melanoma
Uveal melanoma is a melanoma that occurs either in the coloured part of the eye (the iris) or other tissues nearby. It is a rare type of cancer.
UV Index
The UV index is a measurement of how much ultraviolet radiation is reaching a particular place at a given time. UV index forecasts are sometimes given as part of weather reports.

References

CLOSE
Physician Information References
1. Newton, J.A., V. Bataille, K. Griffiths, et al.,
How common is the atypical mole syndrome phenotype in apparently sporadic melanoma?
J Am Acad Dermatol, 1993. 29: p. 989-996.
http://www.ncbi.nlm.nih.gov/pubmed/8245266?dopt=Abstract
2. Cutler, C., W. Foulkes, J.-S. Brunet, et al.,
Cutaneous malignant melanoma in women is uncommonly associated with a family history of melanoma in first-degree relatives: a case control study.
Melanoma Research, 1996. 6: p. 435-440.
http://www.ncbi.nlm.nih.gov/pubmed/9013481?dopt=Abstract
3. Aitken, J.F., D.L. Duffy, A. Green, et al.,
Heterogeneity of melanoma risk in families of melanoma patients.
American Journal of Epidemiology, 1994. 140(11): p. 961-973.
http://www.ncbi.nlm.nih.gov/pubmed/7985658?dopt=Abstract
4. Bataille, V., R. Hiles, and J. Newton Bishop,
Retinoblastoma, melanoma and the atypical mole syndrome.
British Journal of Dermatology, 1995. 60: p. 622-626.
http://www.ncbi.nlm.nih.gov/pubmed/7756125?dopt=Abstract
5. Traboulsi, E.I., L.E. Zimmerman, and H.J. Manz,
Cutaneous Malignant Melanoma in Survivors of Heritable Retinoblastoma.
Arch Ophthalmology, 1988. 106: p. 1059-1061.
http://www.ncbi.nlm.nih.gov/pubmed/3041943?dopt=Abstract
6. McKusick, V.,
Online Mendelian Inheritance in Man.
2002.
http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim/dd>
7. Li, F.P. and J.F. Fraumeni Jr,
Soft-Tissue Sarcomas, Breast Cancer, and other Neoplasms. A Familial Syndrome? Ann.
Intern. Med., 1969. 71: p. 747-752.
http://www.ncbi.nlm.nih.gov/pubmed/5360287?dopt=Abstract
8. Santibanez-Koref, M.F., J.M. Birch, A.L. Hartley, et al.,
p53 germline mutations in Li-Fraumeni syndrome.
Lancet, 1991. 338: p. 1490-1491.
http://www.ncbi.nlm.nih.gov/pubmed/1683921?dopt=Abstract
9. Travis, L.B., R.E. Curtis, H. Storm, et al.,
Risk of second malignant neoplasms among long-term survivors of testicular cancer.
J Natl Cancer Inst, 1997. 89(19): p. 1429-39.
http://www.ncbi.nlm.nih.gov/pubmed/9326912?dopt=Abstract
10. Paunu, N., E. Pukkala, P. Laippala, et al.,
Cancer incidence in families with multiple glioma patients.
Int J Cancer, 2002. 97(6): p. 819-22.
http://www.ncbi.nlm.nih.gov/pubmed/11857361?dopt=Abstract
11. Hisada, M., R.J. Biggar, M.H. Greene, et al.,
Solid tumors after chronic lymphocytic leukemia.
Blood, 2001. 98(6): p. 1979-81.
http://www.ncbi.nlm.nih.gov/pubmed/11535538?dopt=Abstract
12. Harland, M, R. Meloni, N. Gruis, et al.,
Germline mutations of the CDKN2 gene in UK melanoma families, in Human Molecular Genetics.
1997. p. 2061-2067.
http://www.ncbi.nlm.nih.gov/pubmed/9328469?dopt=Abstract
13. Harland, M., E.A. Holland, P. Ghiorzo, et al.,
Mutation screening of the CDKN2A promoter in melanoma families.
Genes Chromosomes Cancer, 2000. 28(1): p. 45-57.
http://www.ncbi.nlm.nih.gov/pubmed/10738302?dopt=Abstract
14. Harland, M., S. Mistry, D.T. Bishop, et al.,
A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees.
Hum Mol Genet, 2001. 10(23): p. 2679-86.
http://www.ncbi.nlm.nih.gov/pubmed/11726555?dopt=Abstract
15. Newton Bishop, J.A., M. Harland, D.C. Bennett, et al.,
Mutation testing in melanoma families: INK4A, CDK4 and INK4D.
Br J Cancer, 1999. 80(1-2): p. 295-300.
http://www.ncbi.nlm.nih.gov/pubmed/10390011?dopt=Abstract
16. Bergman, W., P. Watson, J. de Jong, et al.,
Systemic cancer and the FAMMM syndrome.
British Journal of Cancer, 1990. 61: p. 932-936.
http://www.ncbi.nlm.nih.gov/pubmed/2372499?dopt=Abstract
17. Lynch, H.T. and R.M. Fusaro,
Pancreatic cancer and the familial atypical multiple mole melanoma (FAMMM) syndrome.
Pancreas, 1991. 6(2): p. 127-131.
http://www.ncbi.nlm.nih.gov/pubmed/1886881?dopt=Abstract
18. Zuo, L., J. Weger, Q. Yang, et al.,
Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma.
Nature Genetics, 1996. 12(1): p. 97-99.
http://www.ncbi.nlm.nih.gov/pubmed/8528263?dopt=Abstract
19. Randerson-Moor, J.A., M. Harland, S. Williams, et al.,
A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family.
Hum Mol Genet, 2001. 10(1): p. 55-62.
http://www.ncbi.nlm.nih.gov/pubmed/11136714
20. Valverde, P., E. Healy, I. Jackson, et al.,
Variants of the melanocyte stimulating hormone receptor gene are associated with red hair and fair skin in humans.
Nature Gentics, 1995. 11: p. 328-330.
http://www.ncbi.nlm.nih.gov/pubmed/7581459?dopt=Abstract
21. Bastiaens, M., J. ter Huurne, N. Gruis, et al.,
The melanocortin-1-receptor gene is the major freckle gene.
Hum Mol Genet, 2001. 10(16): p. 1701-8.
http://www.ncbi.nlm.nih.gov/pubmed/11487574?dopt=Abstract
22. Valverde, P., E. Healy, S. Sikkink, et al.,
The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma.
Human Molec Genet, 1996. 5(10): p. 1663-1666.
http://www.ncbi.nlm.nih.gov/pubmed/8894704?dopt=Abstract
23. Palmer, J.S., D.L. Duffy, N.F. Box, et al.,
Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype?
Am J Hum Genet, 2000. 66(1): p. 176-86.
http://www.ncbi.nlm.nih.gov/pubmed/10631149?dopt=Abstract
24. Winsey, S.L., N.A. Haldar, H.P. Marsh, et al.,
A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer.
Cancer Res, 2000. 60(20): p. 5612-6.
http://www.ncbi.nlm.nih.gov/pubmed/11059748?dopt=Abstract
25. Shahbazi, M., V. Pravica, N. Nasreen, et al.,
Association between functional polymorphism in EGF gene and malignant melanoma.
Lancet, 2002. 359(9304): p. 397-401.
http://www.ncbi.nlm.nih.gov/pubmed/11844511?dopt=Abstract
26. Clark, W.H., Jr., R.R. Reimer, M. Greene, et al.,
Origin of familial malignant melanomas from heritable melanocytic lesions. 'The B-K mole syndrome'.
Arch Dermatol, 1978. 114(5): p. 732-8.
http://www.ncbi.nlm.nih.gov/pubmed/646394?dopt=Abstract
27. Newton Bishop, J., M. Harland, R. Wachsmuth, et al.,
Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations.
J Invest Dermatol, 2000. 114: p. 28-33.
http://www.ncbi.nlm.nih.gov/pubmed/10620111?dopt=Abstract
28. Bishop, D.T., F. Demenais, A.M. Goldstein, et al.,
Geographical variation in the penetrance of CDKN2A mutations for melanoma.
J Natl Cancer Inst, 2002. 94(12): p. 894-903.
http://www.ncbi.nlm.nih.gov/pubmed/12072543?dopt=Abstract
Consortium Information References
1. Harland, M., et al.,
Mutation screening of the CDKN2A promoter in melanoma families.
Genes Chromosomes Cancer, 2000. 28(1): p. 45-57.
2. Pollock PM, et al.,
Mutation analysis of the CDKN2A promoter in Australian melanoma families.
Genes Chromosomes Cancer. 2001 32(1):p 89-94.
3. Liu, L., et al.,
Mutation of the CDKN2A5'UTR creates an aberrant initiation codon and predisposes to melanoma.
Nature Genetics, 1999. 21: p. 1-5.
4. Harland, M., et al.,
A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees.
Hum Mol Genet, 2001. 10(23): p. 2679-86.
5. Randerson-Moor, J.A., et al.,
A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family.
Hum Mol Genet, 2001. 10(1): p. 55-62.
6. Rizos, H., et al.,
A melanoma-associated germline mutation in exon 1beta inactivates p14ARF.
Oncogene, 2001. 20(39): p. 5543-7.
7. Gillanders, E., et al.,
Localization of a novel melanoma susceptibility locus to 1p22.
Am J Hum Genet, 2003. 73(2): p. 301-13.
8. Bishop, D.T., et al.,
Geographical variation in the penetrance of CDKN2A mutations for melanoma.
J Natl Cancer Inst, 2002. 94(12): p. 894-903.
9. Wachsmuth, R.C., et al.,
Heritability and gene-environment interactions for melanocytic nevus density examined in a U.K. adolescent twin study.
J Invest Dermatol, 2001. 117(2): p. 348-52.
10. Newton Bishop, J., et al.,
Genotype/phenotype and penetrance studies in melanoma families with germline CDKN2A mutations.
J Invest Dermatol, 2000. 114: p. 28-33.